std::rint, std::rintf, std::rintl, std::lrint, std::lrintf, std::lrintl, std::llrint, std::llrintf
|   Defined in header  <cmath>
  | 
||
|   float       rint ( float arg ); float rintf( float arg );  | 
(1) | (since C++11) | 
|   double      rint ( double arg );  | 
(2) | (since C++11) | 
|   long double rint ( long double arg ); long double rintl( long double arg );  | 
(3) | (since C++11) | 
|   double      rint ( IntegralType arg );  | 
(4) | (since C++11) | 
|   long lrint ( float arg ); long lrintf( float arg );  | 
(5) | (since C++11) | 
|   long lrint ( double arg );  | 
(6) | (since C++11) | 
|   long lrint ( long double arg ); long lrintl( long double arg );  | 
(7) | (since C++11) | 
|   long lrint ( IntegralType arg );  | 
(8) | (since C++11) | 
|   long long llrint ( float arg ); long long llrintf( float arg );  | 
(9) | (since C++11) | 
|   long long llrint ( double arg );  | 
(10) | (since C++11) | 
|   long long llrint ( long double arg ); long long llrintl( long double arg );  | 
(11) | (since C++11) | 
|   long long llrint ( IntegralType arg );  | 
(12) | (since C++11) | 
arg to an integer value (in floating-point format), using the current rounding mode.arg to an integer value, using the current rounding mode. Parameters
| arg | - | floating point value | 
Return value
If no errors occur, the nearest integer value to arg, according to the current rounding mode, is returned.
Error handling
Errors are reported as specified in math_errhandling.
If the result of std::lrint or std::llrint is outside the range representable by the return type, a domain error or a range error may occur.
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
-  For the 
std::rintfunction: 
-  If 
argis ±∞, it is returned, unmodified -  If 
argis ±0, it is returned, unmodified -  If 
argis NaN, NaN is returned 
-  For 
std::lrintandstd::llrintfunctions: 
-  If 
argis ±∞, FE_INVALID is raised and an implementation-defined value is returned - If the result of the rounding is outside the range of the return type, FE_INVALID is raised and an implementation-defined value is returned
 -  If 
argis NaN, FE_INVALID is raised and an implementation-defined value is returned 
Notes
POSIX specifies that all cases where std::lrint or std::llrint raise FE_INEXACT are domain errors.
As specified in math_errhandling, FE_INEXACT may be (but isn't required to be on non-IEEE floating-point platforms) raised by std::rint when rounding a non-integer finite value.
The only difference between std::rint and std::nearbyint is that std::nearbyint never raises FE_INEXACT.
The largest representable floating-point values are exact integers in all standard floating-point formats, so std::rint never overflows on its own; however the result may overflow any integer type (including std::intmax_t), when stored in an integer variable.
If the current rounding mode is...
-  FE_DOWNWARD, then 
std::rintis equivalent to std::floor. -  FE_UPWARD, then 
std::rintis equivalent to std::ceil. -  FE_TOWARDZERO, then 
std::rintis equivalent to std::trunc -  FE_TONEAREST, then 
std::rintdiffers from std::round in that halfway cases are rounded to even rather than away from zero. 
Example
#include <iostream> #include <cmath> #include <cfenv> #include <climits> int main() { #pragma STDC FENV_ACCESS ON std::fesetround(FE_TONEAREST); std::cout << "rounding to nearest (halfway cases to even):\n" << "rint(+2.3) = " << std::rint(2.3) << " rint(+2.5) = " << std::rint(2.5) << " rint(+3.5) = " << std::rint(3.5) << '\n' << "rint(-2.3) = " << std::rint(-2.3) << " rint(-2.5) = " << std::rint(-2.5) << " rint(-3.5) = " << std::rint(-3.5) << '\n'; std::fesetround(FE_DOWNWARD); std::cout << "rounding down:\n" << "rint(+2.3) = " << std::rint(2.3) << " rint(+2.5) = " << std::rint(2.5) << " rint(+3.5) = " << std::rint(3.5) << '\n' << "rint(-2.3) = " << std::rint(-2.3) << " rint(-2.5) = " << std::rint(-2.5) << " rint(-3.5) = " << std::rint(-3.5) << '\n' << "rounding down with lrint\n" << "lrint(+2.3) = " << std::lrint(2.3) << " lrint(+2.5) = " << std::lrint(2.5) << " lrint(+3.5) = " << std::lrint(3.5) << '\n' << "lrint(-2.3) = " << std::lrint(-2.3) << " lrint(-2.5) = " << std::lrint(-2.5) << " lrint(-3.5) = " << std::lrint(-3.5) << '\n'; std::cout << "lrint(-0.0) = " << std::lrint(-0.0) << '\n' << "lrint(-Inf) = " << std::lrint(-INFINITY) << '\n'; // error handling std::feclearexcept(FE_ALL_EXCEPT); std::cout << "std::rint(0.1) = " << std::rint(.1) << '\n'; if (std::fetestexcept(FE_INEXACT)) std::cout << " FE_INEXACT was raised\n"; std::feclearexcept(FE_ALL_EXCEPT); std::cout << "std::lrint(LONG_MIN-2048.0) = " << std::lrint(LONG_MIN-2048.0) << '\n'; if (std::fetestexcept(FE_INVALID)) std::cout << " FE_INVALID was raised\n"; }
Possible output:
rounding to nearest (halfway cases to even): 
rint(+2.3) = 2  rint(+2.5) = 2  rint(+3.5) = 4
rint(-2.3) = -2  rint(-2.5) = -2  rint(-3.5) = -4
rounding down:
rint(+2.3) = 2  rint(+2.5) = 2  rint(+3.5) = 3
rint(-2.3) = -3  rint(-2.5) = -3  rint(-3.5) = -4
rounding down with lrint
lrint(+2.3) = 2  lrint(+2.5) = 2  lrint(+3.5) = 3
lrint(-2.3) = -3  lrint(-2.5) = -3  lrint(-3.5) = -4
lrint(-0.0) = 0
lrint(-Inf) = -9223372036854775808
std::rint(0.1) = 0
    FE_INEXACT was raised
std::lrint(LONG_MIN-2048.0) = -9223372036854775808
    FE_INVALID was raisedSee also
|    (C++11)(C++11)(C++11)  | 
   nearest integer not greater in magnitude than the given value   (function)  | 
|    (C++11)(C++11)(C++11)  | 
   nearest integer using current rounding mode   (function)  | 
|    (C++11)(C++11)  | 
   gets or sets rounding  direction   (function)  |