std::legendre, std::legendref, std::legendrel
|   double      legendre( unsigned int n, double x ); float       legendre( unsigned int n, float x );  | 
(1) | (since C++17) | 
|   double      legendre( unsigned int n, IntegralType x );  | 
(2) | (since C++17) | 
Parameters
| n | - | the degree of the polynomial | 
| x | - | the argument, a value of a floating-point or integral type | 
Return value
If no errors occur, value of the order-n unassociated Legendre polynomial of x, that is | 1 | 
| 2n n!  | 
| dn | 
| dxn | 
-1)n
, is returned.
Error handling
Errors may be reported as specified in math_errhandling
- If the argument is NaN, NaN is returned and domain error is not reported
 - The function is not required to be defined for |x|>1
 -  If 
nis greater or equal than 128, the behavior is implementation-defined 
Notes
Implementations that do not support C++17, but support ISO 29124:2010, provide this function if __STDCPP_MATH_SPEC_FUNCS__ is defined by the implementation to a value at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__ before including any standard library headers.
Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1), provide this function in the header tr1/cmath and namespace std::tr1
An implementation of this function is also available in boost.math
The first few Legendre polynomials are:
- legendre(0, x) = 1
 - legendre(1, x) = x
 -  legendre(2, x) = 
(3x21 2 
-1) -  legendre(3, x) = 
(5x31 2 
-3x) -  legendre(4, x) = 
(35x41 8 
-30x2
+3) 
Example
#include <cmath> #include <iostream> double P3(double x) { return 0.5*(5*std::pow(x,3) - 3*x); } double P4(double x) { return 0.125*(35*std::pow(x,4)-30*x*x+3); } int main() { // spot-checks std::cout << std::legendre(3, 0.25) << '=' << P3(0.25) << '\n' << std::legendre(4, 0.25) << '=' << P4(0.25) << '\n'; }
Output:
-0.335938=-0.335938 0.157715=0.157715
See also
|    (C++17)(C++17)(C++17)  | 
   Laguerre polynomials  (function)  | 
|    (C++17)(C++17)(C++17)  | 
   Hermite polynomials  (function)  | 
External links
Weisstein, Eric W. "Legendre Polynomial." From MathWorld--A Wolfram Web Resource.